
Using Rotational Matrices to Generate Triplex Algebras 
 

 
The real numbers are the dependable breadwinner of the family, the complete ordered field 
we all rely on. The complex numbers are a slightly flashier but still respectable younger 
brother: not ordered, but algebraically complete. The quaternions, being noncommutative, are 
the eccentric cousin who is shunned at important family gatherings. But the octonions are the 
crazy old uncle nobody lets out of the attic: they are nonassociative. 

    —John Baez 

 

To calculate three-dimensional fractals we need a triplex algebra, ie an arithmetic for 

three-dimensional co-ordinates, to allow us to add and multiply numbers such as (1, 2, 

6). In the spirit of this quote, it seems that any triplex algebra belongs to a degenerate 

branch of the family tree. Be that as it may, the beauty and complexity of the fractal 

images it generates justify its existence. 

 

This paper contains no original ideas. It merely attempts to systematise the 

mathematics introduced by Daniel White and Paul Nylander in pursuit of the three-

dimensional equivalent of the Mandelbrot set. This much sought mythical beast has 

been variously called the Mandelbulb, Mandalabrot, and even Manhanabrot. 

 

Rationale 

Multiplying a complex number by another complex number is equivalent to stretching 

the first number by the modulus of the second, and rotating it by the angle of the 

second number. To see this, consider two complex numbers in polar form, re
iθ
 and 

se
iφ
. Their product is rse

i(θ+φ)
, so the resulting number has modulus equal to the 

product of the moduli of the two original numbers, and its angle is the sum of their 

angles. This idea can be extended to triplex numbers, but with two caveats, (1) the 

polar form is not unique, and (2) the triplex numbers do not form a well-behaved 

algebra. 

There are three basic rotation matrices in three dimensions, corresponding to rotations 

around the x, y and z axes: 

 
 



For instance, Rx(θ) rotates the z-axis towards the y-axis by the angle θ, so that the 

point (x, y, z) becomes (x, ycosθ - zsinθ, zcosθ + ysinθ). This result comes from the 

matrix multiplication of Rx(θ) by the vector (x, y, z) interpreted as a matrix with one 

vertical column. (See http://en.wikipedia.org/wiki/Matrix_multiplication.) 

 

Taking all pairwise products of the rotational matrices, we obtain six matrix terms:  

Rx(θ)Ry(φ), Ry(θ)Rx(φ), Rz(θ)Ry(φ), Ry(θ)Rz(φ), Rz(θ)Rx(φ), and Rx(θ)Rz(φ).  
 

Each of the above six matrix products can be interpreted as a rotation through two 

angles. Bearing in mind the parallel with complex numbers, this is analogous to 

multiplying two triplex numbers. To obtain the actual formulas for triplex 

multiplication we multiply the matrix product by the vectors (1, 0, 0), (0, 1, 0) and (0, 

0, 1). The three resulting triplex values are the three columns of the matrix. 

 

In terms of producing graphics, only two of these triplex values are of interest in each 

matrix product. The ones that have zero terms are degenerate from a graphical 

perspective.  

 

Having obtained 12 triplex polar forms we now try all combinations of plus and 

minus for θ and φ. This gives us 48 different formulas for the triplex polar form. 

 

NB Maybe we should also interchange θ and φ, as these are defined differently. That 

might increase the possibilities to 96. 

 

Each variation is effectively a formula for triplex polar form, similar to the familiar 

(cosθcosφ, sinθcosφ, sinφ) generously popularised by Paul Nylander. Any complex 

number can be raised to a real power p using (re
iθ
)
p
 = r

p
e
piθ

. By analogy with the 

complex formula, we define a triplex exponentiation formula along these lines: 

(x, y, z)
p
 = r

 p
( cos(pθ)cos(pφ), sin(pθ)cos(pφ), sin(pφ) )                         

where r = √(x2
 + y

2
 + z

2
), θ = atan2(y, x) and φ = arcsin(z/r).                                     (1) 

 

Note that p can be any real value, allowing us to define negative and fractional 

powers, in addition to using natural numbers. 

 

The choice of a particular polar form also bestows a multiplication formula similar to: 

(x1, y1, z1)*(x2, y2, z2) =  r1r2( cos(θ1+θ2)cos(φ1+φ2), sin(θ1+θ2)cos(φ1+φ2), sin(φ1+φ2) ) 

where r1 = √(x1
2
 + y1

2
 + z1

2
), θ1 = atan2(y1, x1) and φ1 = arcsin(z1/r1) and 

           r2 = √(x2
2
 + y2

2
 + z2

2
), θ2 = atan2(y2, x2) and φ2 = arcsin(z2/r2).                       (2) 

 

Note that a particular polar form, ie (cosθcosφ, sinθcosφ, sinφ), has been used in the 

formulas above purely for ease of illustration. Each variant of the polar form 

generates a different pair of formulas, analogously to equations 1 and 2. The 

particular polar form used here occurs as #43 below. 

 

Once triplex multiplication and exponentiation are both defined, it is feasible to 

calculate various fractal formulas and so to plot them as mandelbulbs.  

 

The 48 combinations of cos and sin terms listed below each define a particular 

exponentiation and a corresponding multiplication formula. Each of these pairs of 



formulas can be used to graphically express a given fractal formula in a way that is 

different from that of other polar forms. The Visions of Chaos program, available 

from http://softology.com.au/ uses all 48 variations. 

 

The 48 triplex polar forms are worked out below. 

 

_____________________________________________________________________ 
 

            |1   0      0  |       |cosφ   0  sinφ| 
Rx(θθθθ)Ry(φφφφ) = |0  cosθ  -sinθ|   *   | 0     1   0  | 
            |0  sinθ   cosθ|       |-sinφ  0  cosφ| 
 

            | cosφ        0      sinφ   | 
          = | sinθsinφ   cosθ   -sinθcosφ|  
            |-cosθsinφ   sinθ    cosθcosφ| 
 

Taking columns one and three, this gives us:  

1) XpYp1 = ( cosφ, sinθsinφ, -cosθsinφ ) and  

2) XpYp3 = ( sinφ, -sinθcosφ, cosθcosφ ). By swapping signs in the first term we get: 

3) XpYn1 = ( cosφ, -sinθsinφ, cosθsinφ ), (negative φ) 
4) XnYp1 = ( cosφ, -sinθsinφ, -cosθsinφ ), (negative θ) 
5) XnYn1 = ( cosφ, sinθsinφ, cosθsinφ ) (negative φ & θ) and from the second term: 

6) XpYn3 = ( -sinφ, -sinθcosφ, cosθcosφ ), (negative φ) 
7) XnYp3 = ( sinφ, sinθcosφ, cosθcosφ ), (negative θ) 
8) XnYn3 = ( -sinφ, sinθcosφ, cosθcosφ ) (negative φ & θ). 
 

_____________________________________________________________________ 

 

              | cosθ   0  sinθ|      |1   0      0  | 
Ry(θθθθ)Rx(φφφφ) =   | 0      1   0  |  *   |0  cosφ  -sinφ| 
              |-sinθ   0  cosθ|      |0  sinφ   cosφ| 
 

              | cosθ     sinθsinφ    sinθcosφ| 
          =   |   0      cosφ       -sinφ    | 
              |-sinθ     cosθsinφ    cosθcosφ| 
 

Taking columns two and three, this gives us: 

9) YpXp2 = ( sinθsinφ, cosφ, cosθsinφ ) and  

10) YpXp3 = ( sinθcosφ, -sinφ, cosθcosφ ). Signs swaps in the first term give: 

11) YpXn2 = ( -sinθsinφ, cosφ, -cosθsinφ ), (negative φ) 
12) YnXp2 = ( -sinθsinφ, cosφ, cosθsinφ ), (negative θ) 
13) YnXn2 = ( sinθsinφ, cosφ, -cosθsinφ ) (negative φ & θ) and from the second term: 

14) YpXn3 = ( sinθcosφ, sinφ, cosθcosφ ), (negative φ) 
15) YnXp3 = ( -sinθcosφ, -sinφ, cosθcosφ ), (negative θ) 
16) YnXn3 = ( -sinθcosφ, sinφ, cosθcosφ ) (negative φ & θ). 
 

_____________________________________________________________________ 



 

 

 

              | cosθ   -sinθ   0|      |1   0      0  | 
Rz(θθθθ)Rx(φφφφ) =   | sinθ    cosθ   0|  *   |0  cosφ  -sinφ| 
              |   0       0    1|      |0  sinφ   cosφ| 
 

                                  | cosθ       -sinθcosφ    sinθsinφ | 

            =        | sinθ         cosθcosφ   -cosθsinφ | 

                      |     0             sinφ        cosφ     | 

 

Taking columns two and three, this gives us: 

17) ZpXp2 = ( -sinθcosφ, cosθcosφ, sinφ ) and 

18) ZpXp3 = ( sinθsinφ, -cosθsinφ, cosφ ). By swapping signs in the first term we get: 

19) ZpXn2 = ( -sinθcosφ, cosθcosφ, -sinφ ), (negative φ) 
20) ZnXp2 = ( sinθcosφ, cosθcosφ, sinφ ), (negative θ) 
21) ZnXn2 = ( sinθcosφ, cosθcosφ, -sinφ ) (negative φ & θ) and from the second term: 

22) ZpXn3 = ( -sinθsinφ, cosθsinφ, cosφ ), (negative φ) 
23) ZnXp3 = ( -sinθsinφ, -cosθsinφ, cosφ ), (negative θ) 
24) ZnXn3 = ( sinθsinφ, cosθsinφ, cosφ ) (negative φ & θ). 
 

_____________________________________________________________________ 

 

              |1   0      0  |       |cosφ   -sinφ  0| 
Rx(θθθθ)Rz(φφφφ) =   |0  cosθ  -sinθ|   *   |sinφ    cosφ  0| 
              |0  sinθ   cosθ|       |  0       0   1| 
 

              |cosφ       -sinφ         0  | 
          =   |cosθsinφ    cosθcosφ   -sinθ| 
              |sinθsinφ    sinθcosφ    cosθ| 
 

Taking columns one and two, this gives us: 

25) XpZp1 = ( cosφ, cosθsinφ, sinθsinφ ) and 

26) XpZp2 = ( -sinφ, cosθcosφ, sinθcosφ ). By swapping signs in the first term we get: 

27) XpZn1 = ( cosφ, -cosθsinφ, -sinθsinφ ), (negative φ) 
28) XnZp1 = ( cosφ, cosθsinφ, -sinθsinφ ), (negative θ) 
29) XnZn1 = ( cosφ, -cosθsinφ, sinθsinφ ), (negative φ & θ) and from the 2nd term: 

30) XpZn2 = ( sinφ, cosθcosφ, sinθcosφ ), (negative φ) 
31) XnZp2 = ( -sinφ, cosθcosφ, -sinθcosφ ), (negative θ) 
32) XnZn2 = ( sinφ, cosθcosφ, -sinθcosφ ) (negative φ & θ). 
 

_____________________________________________________________________ 

 

 

 

 

 



 

 

 

 

              | cosθ   0  sinθ|      | cosφ   -sinφ  0| 
Ry(θθθθ)Rz(φφφφ) =   | 0      1   0  |  *   | sinφ    cosφ  0| 

              |-sinθ   0  cosθ|      |  0       0    1| 
 

              | cosθcosφ    -cosθsinφ    sinθ| 
          =   | sinφ         cosφ          0 | 
              |-sinθcosφ     sinθsinφ    cosθ| 
 

Taking columns one and two, this gives us: 

33) YpZp1 = ( cosθcosφ, sinφ, -sinθcosφ ) and 

34) YpZp2 = ( -cosθsinφ, cosφ, sinθsinφ ). By swapping signs in the first term we get: 

35) YpZn1 = ( cosθcosφ, -sinφ, -sinθcosφ ), (negative φ) 
36) YnZp1 = ( cosθcosφ, sinφ, sinθcosφ ), (negative θ) 
37) YnZn1 = ( cosθcosφ, -sinφ, sinθcosφ ), (negative φ & θ) and from the 2nd term: 

38) YpZn2 = ( cosθsinφ, cosφ, -sinθsinφ ), (negative φ) 
39) YnZp2 = ( -cosθsinφ, cosφ, -sinθsinφ ), (negative θ) 
40) YnZn2 = ( cosθsinφ, cosφ, sinθsinφ ) (negative φ & θ). 
 

_____________________________________________________________________ 

 

              | cosθ   -sinθ    0|      | cosφ  0  sinφ| 
Rz(θθθθ)Ry(φφφφ) =   | sinθ    cosθ    0|  *   | 0     1   0  | 
              |   0       0     1|      |-sinφ  0  cosφ| 
 

              | cosθcosφ   -sinθ       cosθsinφ | 
          =   | sinθcosφ    cosθ       sinθsinφ | 
              |-sinφ          0    cosφ     | 
 

Taking columns one and three, this gives us: 

41) ZpYp1 = ( cosθcosφ, sinθcosφ, -sinφ ) and 

42) ZpYp3 = ( cosθsinφ, sinθsinφ, cosφ ). By swapping signs in the first term we get: 

43) ZpYn1 = ( cosθcosφ, sinθcosφ, sinφ ), (negative φ) 
44) ZnYp1 = ( cosθcosφ, -sinθcosφ, -sinφ ), (negative θ) 
45) ZnYn1 = ( cosθcosφ, -sinθcosφ, sinφ ), (negative φ & θ) and from the 2nd term: 

46) ZpYn3 = ( -cosθsinφ, -sinθsinφ, cosφ ), (negative φ) 
47) ZnYp3 = ( cosθsinφ, -sinθsinφ, cosφ ), (negative θ) 
48) ZnYn3 = ( -cosθsinφ, sinθsinφ, cosφ ) (negative φ & θ). 
 

_____________________________________________________________________ 
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